Name of the subject: Automatics			NEPTUN-code: Contact hours/week: KMWAZBABNE 2 lectures + 2 lab. practice	
Credits: 4		Recommended (optional) prerequisite:		
Requirement: Assignment		-		
Lecturer:	Assignment:		Faculty and institute:	
Árpád Varga	teaching assistant		Kandó Kálmán Faculty	of Electricity
Antal Csuka, Ph.D	senior lecturer		Institute of Instrumenta	tion and Automation

Subject		
Aim of the course:		
Presenting the basics of automation theory and industrial applications of automatics.		
Lecture topics:	Week	Cont. hours
Introduction: Concept of automation, historical background. Manufacturing and process technologies. General structure of process control systems. Static and dynamic system characteristics.	1.	2
LTI Systems. Using Differential equations as possible transcription method of processes. Transfer functions in time and frequency domain.	2.	2
Basic transfer functions: P, I, D, PT1, PT2, H elements, transfer and step functions. Block diagram manipulation, serial/parallel/feedback connections	3.	2
Structure of closed loop control. Concept of PID compensation. Loop stability conditions.	4.	2
Actuators I: Electric actuators. Relays, AC/DC/stepper motors. Inverters.	5.	2
Actuators II: Hydraulic and pneumatic actuators. Control valves, industrial hydraulic cylinders	6.	2
Theoretical test I.	7.	2
Transmitters I: Position measurement devices: Limit switches, potentiometers, absolute and incremental encoders.	8.	2
Transmitters II: Level measurement in reservoirs. Temperature measurement: thermocouples, thermistors and RTD-s.	9.	2
Transmitters III: Pressure measurement. Flow measurement: volume flow rate and mass flow rate devices.	10.	2
Concept and architecture of industrial Programmable Logical Controllers (PLC-s). PLC programming languages. Structure of PLC programs, interruption handling.	11.	2
Communication protocols used in industrial process control systems. Noise reduction technologies. SCADA systems.	12.	2
Theoretical test II.	13.	2
Retake test, consultation	14.	2

Laboratory topics:	Week	Cont.
		hours
Introducing open loop digital control devices. Zelio hardware and software presentation.	1.	2
Zelio hardware and software presentation.	2.	2
Solving control tasks with Zelio -1.	3.	2
Solving control tasks with Zelio -2.	4.	2
Laboratory test I.: solving control tasks with Zelio independently.	5.	2
Matlab- I software presentation.	7.	2
Feedback control- example and practice.	8.	2
Defining basic transfer functions and function blocks in Matlab.	9.	2
Practice of compensation and stability structure design in Matlab.	10.	2
Matlab-II software presentation.	11.	2
Example of loop stability control design based on Simulink model.	12.	2
Laboratory test II.: simple control loop design with Matlab.	13.	2
Laboratory retake test	14.	2

Requirements for subject accomplishment, marking system.

The subject is evaluated by a *midterm mark*.

Midterm mark is calculated based on the average.

Midterm mark is calculated based on the average of 4 marks (the mark of the 2 theoretical and the 2 laboratory tests).

For the subject accomplishment <u>all of the test marks must</u> <u>be larger than "1"!</u>

More than one test with mark "1" cause "not accomplished" notice in the Neptune system!

Limits for test grading (results are given in %):

```
0% - 35% mark "1"
35% - 50% mark "2"
50% - 62,5% mark "3"
62,5% - 75% mark "4"
75% - 100% mark "5"
```

Retake possibilities:

One of the failed theoretical tests and one of the failed <u>laboratory tests</u> can be retaken during the semester. There are one extra retake possibility during the exam period, concerning on <u>only one test</u>.

Literature:

László Gecsey – József Neszveda Ph.D.: Design Engineering In Practice

Practical Process Control